Handling classification errors by learning to reject classifications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning When to Reject an Importance Sample

When observations are incomplete or data are missing, approximate inference methods based on importance sampling are often used. Unfortunately, when the target and proposal distributions are dissimilar, the sampling procedure leads to biased estimates or requires a prohibitive number of samples. Our method approximates a multivariate target distribution by sampling from an existing, sequential ...

متن کامل

Multi-label classification with a reject option

We consider multi-label classification problems in application scenarios where classifier accu-racy is not satisfactory, but manual annotation is too costly. In single-label problems, a wellknown solution consists of using a reject option, i.e., allowing a classifier to withhold unreliabledecisions, leaving them (and only them) to human operators. We argue that this solution can be<...

متن کامل

Optimum Reject Options for Prototype-based Classification

We analyse optimum reject strategies for prototype-based classifiers and real-valued rejection measures, using the distance of a data point to the closest prototype or probabilistic counterparts. We compare reject schemes with global thresholds, and local thresholds for the Voronoi cells of the classifier. For the latter, we develop a polynomial-time algorithm to compute optimum thresholds base...

متن کامل

Multiple Reject Thresholds for Improving Classification Reliability

In pattern recognition systems, Chow’s rule is commonly used to reach a trade-off between error and reject probabilities. In this paper, we investigate the effects of estimate errors affecting the a posteriori probabilities on the optimality of Chow’s rule. We show that the optimal error-reject tradeoff is not provided by Chow’s rule if the a posteriori probabilities are affected by errors. The...

متن کامل

Reject Options in Fuzzy Pattern Classification Rules

A pattern to be classified is an object described by d feature values, i.e. a d-dimensional vector x= (x1 x2 ... xd) . Conventional pattern classification aims at associating each pattern to one of c predefined classes {ω1, ω2, ..., ωc} assumed to be representative of particular objects available from a learning set Ω = {x1,x1, ...xn}. The classification is carried out on the base of class labe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista dos Trabalhos de Iniciação Científica da UNICAMP

سال: 2018

ISSN: 2596-1969

DOI: 10.20396/revpibic262018369